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ABSTRACT: The possibility of using near-infrared spectroscopy (NIRS) for the authentication of wild European sea bass
(Dicentrarchus labrax) was investigated in this study. Three different chemometric techniques to process the NIR spectra were
developed, and their ability to discriminate between wild and farmed sea bass samples was evaluated. One approach used spectral
information to directly build the discrimination model in a latent variable space; the second approach first used wavelets to
transform the spectral information and subsequently derived the discrimination model using the transformed spectra; in the third
approach a cascaded arrangement was proposed whereby very limited chemical information was first estimated from spectra
using a regression model, and this estimated information was then used to build the discrimination model in a latent variable
space. All techniques showed that NIRS can be used to reliably discriminate between wild and farmed sea bass, achieving the
same classification performance as classification methods that use chemical properties and morphometric traits. However,
compared to methods based on chemical analysis, NIRS-based classification methods do not require reagents and are simpler,
faster, more economical, and environmentally safer. All proposed techniques indicated that the most predictive spectral regions
were those related to the absorbance of groups CH, CH2, CH3, and H2O, which are related to fat, fatty acids, and water content.

KEYWORDS: European sea bass, PLS-DA, wavelet analysis, authentication, near-infrared spectroscopy, fraud detection

■ INTRODUCTION
Assessment of seafood origin is a security measure to protect
consumers and avoid fraud. Mandatory information required
for a full characterization of the marketed fish (species
membership, whether wild or farmed, geographic origin) is
regulated by stringent laws in the European Union.1 Regulatory
interventions aim at avoiding mislabeling or substituting wild
fish with farmed fish and mitigating risks for the consumer’s
confidence and health. Therefore, the development of novel
analytical technologies, as well as the improvement of the
existing ones, can be very helpful to detect fraud in the seafood
industry. In particular, discrimination between wild seafood and
farmed seafood is of paramount importance to achieve
satisfactory quality standards.
Several techniques have been proposed in the past decade to

detect the wild/farmed substitution fraud in seafood.2 A
macroscopic examination of fish is of limited value due to the
lack of specific targets in terms of body integrity and loss of
morphologic traits at sale time. Other types of analysis, such as
genomics and proteomics patterns, present limited application
because the selection of reliable markers is very difficult for
different populations. Currently, the most informative method-
ology for discriminating between wild and farmed fish is the
determination of fatty acids (FAs) fingerprinting and the ratios

of isotopes of carbon and nitrogen (13C/12C and 15N/14N,
expressed as δ13C and δ15N).3−5 Both fingerprints vary in the
muscles according to the season, feeding status, and species, but
some specific targets could be adopted as markers of the
production system.3 For example, Alasalvar and co-workers6

suggested that a high arachidonic amount could be a marker for
wild fish. In farmed fish, plant oil intake leads to an increase in
C18 FA in muscle lipids, particularly 18:2n-6 (linoleic acid),
18:3n-3 (α-linolenic acid), and 18:1n-9 (oleic acid), with the
flesh of marine fish retaining these FAs even after a refeeding
period with fish oil.7 However, all of the methods used to
characterize FAs require sample preparation for lipid extraction
and gas chromatography analysis, which are expensive and
time-consuming compared to the shelf life of the fish product.
Several emerging technologies have been proposed for the

rapid and nondestructive analysis of fish traceability and
authentication,8−11 such as nuclear magnetic resonance
(NMR), front-face fluorescence spectroscopy, and near-infrared
spectroscopy (NIRS). Among the most promising techniques,
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high-resolution nuclear magnetic resonance (HR-NMR) was
successfully applied to obtain spectral information on the
classification of wild/farmed case, especially on fish lipids.10,11

This technique provides a fingerprint of FA profiles linked to
other characteristics, such as the positional distribution of
polyunsaturated FA on triglycerides.12 HR-NMR spectra
combined with different chemometric strategies were used for
classification purposes on different species, but this technique is
not widely utilized for seafood authentication due to problems
in the standardization of the procedures.2,11,13

NIRS is particularly favorable because it is simpler, more
economical, environmentally safer, and faster than many other
techniques. Several applications have been reported that use
NIRS for food and beverage authentication, demonstrating
versatility and high speed of analysis.14,15 Recent studies have
highlighted the potential of NIRS to differentiate sea bass
(Dicentrarchus labrax) from different rearing systems.8,16,17 In
these applications, the classification ability among rearing
systems seems to decrease according to the storage time, and
typically some additional treatments such as freeze-drying are
required to improve the accuracy of origin prediction.
In this paper, the possibility of using NIRS to discriminate

between wild and farmed sea bass samples was investigated.
Three different chemometric approaches were developed to
process the available NIR spectra. In the first approach, a
cascaded arrangement was proposed whereby chemical
information was first estimated from spectra using latent
variables regression, and this estimated information was then
used to build the discrimination model in a latent variable
space. The second approach used spectral information to
directly build the discrimination model in a latent variable
space. The third approach first used wavelets to transform the
spectral information and, subsequently, developed the discrim-
ination model using the transformed spectra. The classification
results were compared to a reference classification obtained
using only chemical and morphometric information.

■ MATERIALS AND METHODS
European Sea Bass Collection. Farmed and wild fish were

collected in different sales centers and different cities in 2008.18

Samples were transported to the laboratory within 24 h from the
collection time at refrigerated temperature (4 ± 1 °C, constantly
monitored by a data logger Testo 174-T, Testo AG, Germany) and
were immediately processed for analysis upon their arrival at the
laboratory. The data set comprised 38 calibration samples with
determined attribution of production method and 66 validation
samples with declared methods of production (32 declared wild and
34 declared farmed). Compared to the data set presented in ref 18,
two samples were removed because the corresponding spectra had not
been collected. The same study (which was used as a classification
reference in the present work) showed that the number of samples
classified as farmed among those declared wild was 22 (corresponding
to 69% of substitution fraud) and, at the same time, 6 samples among
those declared farmed were formally ascribed to the wild group (i.e.,
misclassified).
A total of 35 chemical properties (fatty acids, bromatological, and

isotopes) and morphometric traits were measured for each available
sample. These variables are listed in Table 1 (the meaning of the VIP
index will be clarified under Statistical Analysis) and will be collectively
identified as “chemistry” variables in the remainder of the paper.
Sample Preparation and NIR Analysis. After dissection, the

epiaxial white muscle portion of the fillet was ground with a Retsch
Grindomix (Retsch GmbH, Hann, Germany) at 4000 rpm for 10 s.
Two aliquots per sample (approximately 10 g each) were placed in a
50 mm diameter ring cup and scanned in reflectance mode at 2 nm

intervals from 1100 to 2500 nm using a scanning monochromator
NIRSystem 5000 (FOSS, Silver Spring, MD).

Spectra Pretreatment. For each aliquot of a sample, a mean
spectrum was obtained by averaging from 32 multiple scans; then, the
spectrum of the sample was obtained by averaging those of the two
aliquots. Reflectance (R) values were converted into absorbance (A)
values through A = log(1/R). Mathematical pretreatment reduced the
light scattering caused by the sample particles and removed the
additional variation in baseline shift typically present in diffused
reflectance spectra. Standard normal variate and first- and second-
order derivates were used to this purpose. More details on spectra
pretreatment are available as Supporting Information.

Statistical Analysis. Principal component analysis (PCA)19 was
applied as a preliminary exploratory tool to reveal the internal
structure of the available data and to check whether the validation
samples could be described by the model developed for the calibration
samples. After this preliminary analysis, four different strategies for sea
bass classification were developed and tested. These strategies are
sketched in Figure 1, in which the acronyms used to identify the
proposed models are also indicated. Figure 1 clarifies that the
strategies differed for the input information as well as for the type of
classification model.

Table 1. Measured Chemical Properties and Morphometric
Traits

property no. property name

1 fat
2 protein
3 ash
4 moisture
5 C14:0
6 C16:0
7 C18: 0
8 Σsaturated
9a C16:1 n-7
10 C18:1 n-9
11 C18:1 n-7
12 C20:1 n-9
13a C22:1 n-11
14a C22:1 n-9
15 Σmonounsaturated
16 C18:2 n-6
17a C18:3 n-6
18 C18:3 n-3
19 C20:2 n-6
20a C20:3 n-6
21 C20:3 n-3
22 C20:4 n-6
23 C20:5 n-3
24 C22:5 n-3
25 C22:6 n-3
26a Σpolyunsaturated
27 Σn-3
28 Σn-6
29 n-3/n-6
30 EPA + DHA
31b δ13C
32 δ15N
33c KI
34c HSI
35c CFI

aNot significant according to the VIP index (VIP < 0.5). bMeasured
from fat-free extract. cMorphometric traits (KI , condition index; HSI,
hepatosomatic index; CFI, celomatic fat index, cf. ref 18).
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As far as the model inputs are concerned, either chemistry variables
or NIR spectra were used. Note that, with respect to the chemistry
inputs, not only the measured properties but also the properties
estimated from NIRS were used as inputs to the classification model.
When NIR spectra were used as inputs directly, two alternative
modeling approaches were investigated: partial least-squares discrim-
inant analysis (PLS-DA)20 and the wavelet-based WPTER (wavelet
packet transform for efficient pattern recognition) method.21

Exploratory Analysis of the Available Samples. PCA returned a
compact representation of the raw data and highlighted the most
predictive variables (chemistry variables or wavelengths, according to
model input) through the combined use of the model scores and
loadings plots. Samples that did not conform to the PCA model
exhibited values of the model residuals Q largely exceeding an assigned
confidence limit (95%). Classification of samples based on inputs that
showed very large values of the Q statistic was therefore considered to
be unreliable.
Authentication Using Measured Chemistry Variables. PLS-DA

applied to the measured chemistry variables (PLS-DA_mc model) was
used to discriminate between the samples belonging to the wild sea
bass class and those belonging to the farmed class.
After the PLS-DA_mc model was built using the full measured

chemistry calibration data set, the variable importance in projection
(VIP) index22 was evaluated to get an indication of the relative
importance of each chemical variable within the discrimination model.
The VIP index for the jth input variable of a PLS-DA model is
calculated as

=
∑ × ×

×
= w J

F
VIP

SSY

SSYj
f
F

jf f1
2

total (1)

where wjf is the weight value for component f of variable j, SSYf is the
sum of squares of explained variance for the f th component, J is the
number of variables, SSYtotal is the sum of squares explained of the
dependent variable, and F is the total number of components.
Because variables with VIP > 1 are of greater importance, whereas

those with VIP < 1 are progressively less important for the model,22 a
more parsimonious PLS-DA_mc model could be developed using as
inputs only those chemistry variables for which VIP > 1. Besides
leading to a more robust discrimination model, this procedure can
reduce the number of chemistry variables that need to be measured for
any new sample requiring authentication.
Authentication Using Estimated Chemistry Variables. A much

faster and cheaper methodology was developed by using a cascaded
approach, whereby a PLS regression model was first used to estimate
the chemistry data from a NIR spectrum, and then a PLS-DA model
used the estimated chemistry variables as inputs to classify the sample
(PLS-DA_ec model). In this study, a cross-validatory procedure23

minimizing the root-mean-squared error of cross-validation was used
to choose the structure of the estimation model (i.e., number of latent
variables to be retained). The PLS model performance was evaluated
by means of the coefficient of determination in calibration (R2

calib) and
cross-validation (R2

cv), together with the ratio of prediction to
deviation (RPD). The inputs to the PLS-DA_ec model were limited to
chemistry variables that could be estimated with accuracy sufficient for
sample classification.

Authentication with Direct Use of Spectral Data. Following
several studies in a variety of food classification examples, PLS-DA was
applied directly to NIR spectra to obtain sea bass classification (PLS-
DA_NIR model).

In principle, to reduce the number of model inputs (wavelengths),
the VIP index could have been used as was done for the chemistry
variable inputs in the PLS-DA_ec model. However, finding a
procedure for variable selection on the basis of the VIP index was
harder for spectra due to the very high correlation between subsequent
wavelengths, and on some occasions this led to important wavelengths
being missed. An alternative approach was therefore considered to
build a parsimonious classification model. This approach used the
wavelet-based WPTER algorithm for sample classification.21 Because
of its ability to analyze a signal at different resolution scales, wavelet
analysis24 has been receiving increasing attention for agriculture and
food quality inspection.25 Due to its complexity, a detailed description
of the WPTER algorithm is not reported here; the reader should refer
to ref 21 for further information. Here it suffices to say that, for each
class (wild or farmed) to be discriminated, WPTER first provided a
mean reconstructed signal where only the most influential wavelengths
exhibit a nonzero signal. Then, classification of a sample is obtained by
comparing its reconstructed NIR signal to the class mean signals.

■ RESULTS
Exploratory PCA Models. The scores plot of the first two

principal components (PCs) of a 4-PC model on the full set of
measured chemistry variables of the calibration data set (Figure

2) clearly identified two clusters (open triangles vs solid
triangles), which include the farmed and wild sea bass samples,
respectively. Separation between the clusters occurred along
PC1 (PC1 > 0 for wild samples). When projected onto the
PCA model, the validation samples (circles) separated into the
same clusters. However, quite a number of declared wild
samples (solid circles) fell within the farmed sea bass cluster
(open symbols); that is, a number of substitution frauds were
highlighted in the scores plot. Although not reported here, it
was verified that all validation samples fell well below the 95%
confidence limit of the Q statistic, which indicated that, from
the point of view of the chemistry variables, the validation data
set completely conformed to the calibration one.
Although not included here, the combined analysis of scores

and loadings of the PCA model revealed that the farmed
samples were characterized by higher levels of fat, protein, ash,
celomatic fat index (CFI), hepatosomatic index (HIS), and,

Figure 1. Schematic of the classification strategies considered in this
study.

Figure 2. Exploratory PCA on the measured chemistry properties of
Table 1. The validation samples (circles) are projected onto the model
defined by the calibration samples (triangles).
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among the fatty acids listed in Table 1, C18:3 n-6, C18:2 n-6,
C18:1 n-9, Σn-6, C20:3 n-3, Σmonosaturated, C20:2 n-6, and
C14:0. The wild samples, instead, were characterized by higher
levels of moisture, δ13C, and δ15N, and, among fatty acids,
Σsaturated, C16:0, C18:1 n-7, C18:0, C20:4 n-6, EPA + DHA,
Σn-3, and C22:5 n-3. These results were in agreement with
other studies on sea bass.3,6

A similar exploratory analysis was carried out on NIR spectra.
Figure 3 shows the mean spectra for the farmed and wild

classes of the calibration data set. The scores plot and model
residuals Q for the exploratory PCA model (using five PCs)
built on the NIR spectra of the calibration data set are shown in
Figure 4. Figure 4a indicates that the first PC is not able to
separate the two classes, although it explains a much higher
fraction (72 vs 43%) of the data variability than in the PCA
model derived on the measured chemistry data. Furthermore,
some of the declared farmed samples exhibited very high model
residuals (rightmost open circles in Figure 4b), indicating that
the corresponding NIR spectra did not conform to those of the
calibration data set. These samples were assigned the IDs 29−
34. Although a detailed discussion of these samples is beyond

the purpose of this work, it is worth noting that the high model
residuals indicate that these samples explored a variability on
NIR spectra that is different from that described by the
calibration data set.

Authentication Using Measured Chemistry Variables
(PLS-DA_mc). A PLS-DA model using one latent variable was
built using the full measured chemistry calibration data set to
discriminate between farmed and wild sea bass samples. The
VIP index is plotted for the most influential (VIP > 1) inputs of
this model in Figure 5. Here, the input variables were classified

as belonging to the farmed class or to the wild one according to
the indications provided by the exploratory PCA model
loadings. In terms of meaningfulness of the input variables
for each class, the results of Figure 5 agreed with those obtained
using a nonparametric permutation test to analyze the same
data set.18 Furthermore, the variables deemed as totally not
significant by the VIP index (VIP < 0.5, see Table 1) were the
same as those discarded by the nonparametric test.
As mentioned earlier, a more parsimonious model can be

developed by using a subset of the chemistry variables having

Figure 3. Mean raw spectra for the farmed and wild classes
(calibration data set).

Figure 4. Exploratory PCA on NIR spectra: (a) scores plot; (b) model residuals. The validation samples (circles) are projected onto the model
defined by the calibration samples (triangles).

Figure 5. Most influential (VIP > 1) chemistry variables for the PLS-
DA_mc classification model according to the VIP index.
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VIP > 1 as inputs to the model. To this purpose, a subset
including only 3 (namely, fat, moisture, and δ13C) out of the 17
the variables shown in Figure 5 was selected. The rationale for
this selection was as follows. First, according to VIP, the
selected variables were among the most discriminating ones of
the two classes; second, these variables could be estimated with
sufficient accuracy from NIR spectra (to be discussed later). A
PLS-DA model (one latent variable) using only these three
measured chemistry variables as inputs was therefore developed
for sea bass authentication; this model was denoted PLS-
DA_mc. Although this model had the same classification ability
of a PLS-DA model using the full data set of measured
chemistry, reducing the number of inputs from 35 to 3
significantly reduced the distance between the clusters in the
scores plot of the PCA exploratory model (Figure S1 in the
Supporting Information). This means that the observable
variability among samples was reduced when the number of
model inputs was reduced. However, the variability described
by the PCA model still allowed the two classes to be separated.
A comparison between the reference classification results

provided by Fasolato and co-workers18 and those obtained
using the PLS-DA_mc model is shown in Table 2 for declared
wild samples and in Table 3 for declared farmed samples. The
two approaches detected the same total number of substitution
frauds (Table 2), although with one sample classification shift
(samples 6 and 12). On the other hand, the PLS-DA_mc
model did not misclassify any of the declared farmed samples
(Table 3).
Authentication Using Estimated Chemistry Variables

(PLS-DA_ec). Fat, moisture, and δ13C (i.e., the inputs to the
PLS-DA_mc model) were estimated from NIR spectra using
three distinct PLS models. The estimation results are shown
graphically in Figure 6, whereas the estimation model
characteristics and performance metrics are reported in Table
4. The models developed for fat and moisture returned accurate
estimations even when extrapolated outside the calibration
range, whereas the model for stable carbon isotope estimation
was less accurate.
A PLS-DA model (PLS-DA_ec) with one latent variable was

built using the estimated chemistry variables as inputs.
Although the estimated value of δ13C was not very accurate,
it was used as an input to the PLS-DA_ec model because the
other chemistry variables with VIP greater than that of the δ13C
(namely, C18:3 n-3, Σsaturated, and C16:0, cf. Figure 5) were
estimated even worse (with RPDs of 1.07, 1.20, and 1.05,
respectively). The classification results are reported in Tables 2
and 3. Despite the fact that one of the model inputs was not
estimated as accurately as the other two from the NIR spectra,
for the declared wild samples the classification results obtained
using the PLS-DA_ec model totally agreed with those obtained
using the PLS-DA_mc model, whereas for declared farmed
samples only two misclassifications were obtained.
Authentication with Direct Use of Spectral Data (PLS-

DA_NIR and WPTER). NIR spectra were used directly as
inputs to a PLS-DA discrimination model (PLD-DA_NIR).
Table 2 shows that the ability of this model to identify the
substitution fraud was very good. Three misclassified farmed
samples were present (Table 3); however, note that two of
them (samples 29 and 30) did not conform to the calibration
data set due to high values of the Q residuals, and therefore the
use of spectral information for these samples was questionable.
As was noted earlier, the dimension of the calibration input

data set may be extremely large when spectra are used as model T
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inputs. For this reason, an attempt to reduce this dimension by
extending the use of the VIP index to spectra was first
attempted (Figure 7), but this approach did not lead to
satisfactory results in terms of the discrimination ability of the
resulting PLS-DA model. We conjecture that this can be
ascribed to the much higher correlation existing between the
model inputs (i.e., wavelengths) than in the measured
chemistry variables case.
As an alternative approach for selective pruning of the input

data set and sample classification, the WPTER algorithm21 was
used (details on the implementation of the algorithm are
available as Supporting Information). Figure 8, which was
obtained with a WPTER model with Daubechies-2 wavelets,
shows the mean reconstructed signals for both the farmed class
and the wild class. WPTER unambiguously showed that the
only influential spectral regions for sample classification were
those within the range ∼1600−1750 nm and at ∼2200 nm.
These regions somewhat overlapped those with a VIP index
much larger than 1 in Figure 7. However, note that, due to the
reconstruction operation, the actual input signal used by
WPTER for sample classification was different from that used
by a PLS-DA model using the same intervals of wavelengths as
inputs.
The classification results of WPTER were in very good

agreement with those provided by the other methods
considered in this work. Three misclassified farmed samples
were present (Table 3), but they referred to validation samples
not conforming to the calibration data set of spectral signals
(IDs 29, 30, and 32).

■ DISCUSSION
NIRS-Based Approaches: Selected Wavelengths. One

advantage of using the PLS-DA_NIR model (with VIP index)
or the WPTER one was the indication of the most influential
wavelengths for sample classification. Both classification models
pointed approximately to the same regions, namely, between
1600 and 1800 nm and around 2200 nm (2172−2226 nm).
Moreover, the VIP index of Figure 7 revealed also an important
region at 1200 nm and a peak at 1900 nm (1930−1938 nm).
The carbon−hydrogen (CH) stretch second overtone was

represented at 1202 nm, and thus the region around 1200 nm
was related to the absorbance of CH, CH2, and CH3 groups.

26

In the region around 1700 nm, first-overtone stretch bonds of
groups CH, CH2 (1722 and 1760 nm), and CH3 were
represented; these peaks were especially related to the lipid
content of the samples.26−28 The region around 2200 nm was
characterized by CH and CH2 combination bands, which could
be related to fatty acids, protein, and peptide groups.29

Eventually, the peak at 1900 nm was specific to the O−H
bond, and it was related to the water content of the sample.27

The selection of the wavelengths related to the absorbance of
fat, fatty acids, and water was in good agreement with the
selection of the chemistry variables obtained through the VIP
index in the PLS-DA_mc model (cf. Figure 5).

Chemistry-Based Approaches and Estimation of
Chemistry Variables. The analysis carried out using the full
set of measured chemistry variables proved to be consistent
with the results reported in the literature, particularly in terms
of variable importance within the classification model (Figure
5). However, this study demonstrated that the VIP index could
be used to reduce the number of input variables to a PLS-DA
classification model to only three, namely, fat, moisture, and
δ13C. Although the lipid and moisture contents are known toT
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vary inversely depending on the size of the animal30 and the
feeding regimen,31,32 in marketable sea bass their simultaneous
use was not redundant. The correlation between these variables
was indeed high, but the variables were not perfectly collinear;
therefore, the use of a correlative technique such as PLS-DA
was appropriate in this respect. It must be stressed that the final
selection of the variables to be used as model inputs was highly
guided by the need to reduce the number of inputs of the PLS-
DA_ec model. Other authors, in fact, proposed individual fatty
acids such as linoleic acid (18:2 n-6),3 arachidonic acid (20:4 n-
6), and the lipid content33 as tracers of the farmed/wild status.

In terms of predictability of each chemistry variable from
NIR spectra, results were consistent with those presented in the
literature. An RPD value >3, as observed for fat (Table 4),
indicated the possibility of obtaining an accurate quantitative
estimation.34 In fact, the value of R2

p obtained in the estimation

Figure 6. Estimated versus measured values of the three chemistry variables used as inputs to the PLS-DA_ec classification model: (a) fat; (b)
moisture; (c) δ13C. The standard deviation (std dev) of the measured values is also indicated.

Table 4. Number of Latent Variables (LVs) Retained in Each
PLS Model for the Estimation of Fat, Moisture, and δ13C
and Mean Performance of the Estimation Modelsa

no. of LV R2
calib R2

cv R2
p RPD

fat 7 0.98 0.97 0.97 5.69
moisture 9 0.99 0.98 0.98 6.66
δ13C 9 0.67 0.42 0.45 1.25

aR2
p indicates the coefficient of determination in the estimation (i.e.,

for samples belonging to the validation group).

Figure 7. VIP index for the PLS-DA_NIR model.
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of fat (Table 4) was comparable to values reported in ref 35.
Moreover, the estimation performances were similar to those
reported for different fish species8,36 or in intact samples using
NIRS.37 The quantitative estimation of water can be considered
excellent as well.34 Some studies reported NIR analysis as a
surrogate method to evaluate the carbon isotope signature in
vegetables.38,39 The performance obtained in this study on sea
bass muscles was slightly lower (with a poor RPD). The
restricted variability in the calibration data set (Figure 6c) and
the different application analyzed (fish, and not plant) could be
reasonable explanations for the results of Table 4. In any case,
the δ13C estimation accuracy was shown to be adequate for the
purpose of discriminating the wild and farmed populations.
Furthermore, although the regions of absorbance of FAs

were responsible for classification, their predictability using a
PLS model was poor: for FAs of the representative classes of
FAs listed in Table 1, typical RPD values were found to range
from 0.9 to 1.4. The low content of a single FA in the meat and
especially in sea bass fillet18,35 should be considered the main
explanation for the poor estimations of the FA profiles.
Furthermore, as suggested by Realini and co-workers27 for
ground beef, poor estimations of some individual FAs could be
caused by the lack of specific absorption peaks, with a similar
spectral profile related to the same absorbing molecular group
(−CH2−).
General Comments on the Proposed Classification

Methods. As shown in Table 2, the classification of declared
wild samples was very similar (with few exceptions) among all
of the techniques analyzed in this work, considering both those
based on chemistry data (PLS-DA_mc, PLS-DA_ec and ref 18)
and those based on spectral data (PLS-DA_NIR and WPTER).
On the contrary, the classification of declared farmed samples
(Table 3) exhibited fewer differences from the one in ref 18, in
which the chemistry data set was correlated with a profile type
generated with data from the literature. It should be noted that
the comparison with a class profile might be a source of
misclassification if, as a result of the farming condition, the
composition of a farmed fish was close to the one of a wild fish.
Because the classifier of ref 18 was used only as a reference

for the classification results of the NIRS-based ones, this work
showed that NIR spectroscopy is a reliable tool for quickly
detecting substitution fraud in marketable sea bass. Particularly,
WPTER seemed to be the most informative way to derive a sea

bass classification model. In fact, WPTER performed not only a
correct classification of the samples but also unambiguously
highlighted the most informative wavelength ranges for sample
classification. One drawback of this method was that it was the
hardest to implement among those considered in this work.
The VIP index applied to a PLS-DA_NIR model provided
similar results in terms of wavelength importance detection,
although this information was somewhat less clearly outlined
than in the WPTER (i.e., no direct wavelength selection could
be carried out). The PLS-DA_ec cascaded arrangement was an
interesting hybrid (in terms of required inputs) approach that
showed the same discrimination capability of the other
approaches, providing the additional advantage of a quick
estimation of fat, moisture, and δ13C.
When spectra were used as inputs, a preliminary PCA

assessment was very useful to determine whether or not the
sample spectrum conformed to the calibration data set. A high
PCA model residual for the sample under investigation
indicated that the classification obtained using NIRS was not
fully reliable for that sample.
In conclusion, the results illustrated in this work clearly

showed that NIRS can be very effective in assessing the
authenticity of wild European sea bass. Classification results
obtained from NIR information (whether using PLS-DA_ec,
PLS-DA_NIR, or WPTER) were almost identical to that
obtained from the combined use of chemical properties and
morphometric traits.
Due to the minimal processing of the fish sample and the

ease of detection of NIR spectra, NIRS-based sample
classification requires negligible processing time and is
therefore particularly suitable for real-time, cost-effective
applications.
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